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In experiments concerning the instability of free shear layers, oscillations have 
been observed in the downstream flow which have a frequency exactly half that of 
the dominant oscillation closer to the origin of the layer. The present analysis 
indicates that the phenomenon is due to a secondary instability associated with 
the nearly periodic flow which arises from the finite-amplitude growth of the 
fundamental disturbance. 

At  first, however, the stability of inviscid shear flows, consisting of a non-zero 
mean component, together with a component periodic in the direction of flow and 
with time, is investigated fairly generally. It is found that the periodic component 
can serve as a means by which waves with twice the wavelength of the periodic 
component can be reinforced. The dependence of the growth rate of the sub- 
harmonic wave upon the amplitude of the periodic component is found for the 
case when the mean flow profile is of the hyperbolic-tangent type. In  order that 
the subharmonic growth rate may exceed that of the most unstable disturbance 
associated with the mean flow, the amplitude of the streamwise component of 
the periodic flow is required to be about 12 yo of the mean velocity difference 
across the shear layer. This represents order-of-magnitude agreement with 
experiment. 

Other possibilities of interaction between disturbances and the periodic flow 
are discussed, and the concluding section contains a discussion of the interactions 
on the basis of the energy equation. 

1. Introduction 
In  his experiments concerning the transition to turbulence of a separated shear 

layer, Sat0 (1956, 1959) confirmed that results obtained through consideration 
of the stability of unbounded shear flows on the basis of linear inviscid stability 
theory could be used to describe the actual onset of oscillations. The agreement 
between theory and experiment was restricted, however, to a region relatively 
near the origin of the layer (which was the edge of a step along whose upper sur- 
face existed a laminar flow). Further downstream, not only a harmonic compon- 
ent, with twice the frequency of the fundamental, but also a subharmonic 
component, with half the frequency, appeared. Evidence of this phenomenon is 
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given in figure 1, which was taken from Sato’s (1959) paper. The simplest non- 
linear argument would lead one to expect the existence of the harmonic wave; 
the origin of the subharmonic wave, of order one-half, is less evident. 

FIGURE 1. Energy spectrum of fluctuation in the streamwise component of velocity, 
measured a t  two stations downstream of the step (figure 8 of Sat0 1959). 

The thickness of the shear layer increases, of course, with distance downstream 
from the step. However, any attempt to explain the origin of the subharmonic on 
the basis of the growth of shear-layer thickness would encounter difficulty in 
explaining why Sat0 & Kuriki (1961) found no such subharmonic waves in the 
transition of the wake behind a flat plate. Although similar downstream growth 
of the shear-layer thickness occurred, only the fundamental and second harmonic 
components were observed. The purpose of the present analysis is to show that a 
mechanism exists for the generation of a subharmonic wave, at least in the case of 
a flow with a hyperbolic tangent velocity profile. This flow is quite similar to that 
investigated by Sato. The mechanism arises directly from the finite-amplitude 
growth of the fundamental instability. 

Wille (1963) also observed the development of subharmonic waves while 
investigating the stability of both circular and plane jets (cf. figures 25 and 53 of 
his report and also figure 5 of the article by Wehrmann & Wille (1958)), as did 
Bradshaw (1966) in the case of a circular jet. On the basis of flow visualization 
with smoke (figure 1 of his report), Wille remarked that the occurrence of the 
subharmonic could be identified as a fusion of the vortices which tend to form 
during the late stages of transition. The formation of these vortices from the 
initial instabilities has been discussed recently by Michalke (1965a). In this 
paper, we shall base our arguments upon the vorticity associated with the funda- 
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mental disturbance and shall not use any discrete vortex model; the coalescence 
concept is, however, undoubtedly a graphic way of describing the problem and 
will be discussed further in the concluding section of this paper. 

Because the non-linear self-interaction of a wave will produce only waves of 
shorter wavelength, a subharmonic wave can arise only through the interaction 
of waves of different wavelengths. One could proceed with a formal non-linear 
analysis on this basis, in much the same manner as Segel (1962) with regard to 
the thermal convection problem. A few comments apropos of this approach will 
be made later. However, careful reading of the experimental data coupled with 
some knowledge concerning the non-linear self-interaction of the fundamental 
for the flow of interest (cf. Schade 1964) allow us to construct a reasonable model 
of the flow just before the emergence of the subharmonic. It is hoped that this 
model permits not only simpler analysis but also a deeper insight into the physical 
processes of importance. 

In figure 1, the energy spectrum of the fluctuation in velocity is shown for 
two downstream stations. Before the subharmonic has emerged, the energy is 
strongly peaked at the fundamental frequency with a much smaller peak at the 
frequency of the second harmonic. After the subharmonic has emerged, the peak 
value of energy occurs a t  the subharmonic frequency. A relative peak still exists, 
however, at the frequency of the fundamental, and the magnitude of the energy 
has nearly the same value as a t  the earlier station. This indicates that while the 
flow, taken as a whole, is still evolving the fundamental instability has achieved 
a state close to equilibrium. Schade (1964) has investigated the non-linear self- 
interaction of the neutral disturbance associated with the flow which has a 
hyperbolic-tangent velocity profile. By extrapolation of the calculated value of 
the second Landau constant, he estimated that the equilibrium amplitude of the 
most strongly amplified disturbance would be about 17 yo of the velocity differ- 
ence across the shear layer. Sat0 (1959) listed the root-mean-squared values of 
the velocity fluctuations at the two downstream stations noted in figure 1 as 
approximately 3 and 10 yo of the velocity difference across the shear layer (see 
figure 17 of his paper). Thus, the actual magnitude of the fundamental just be- 
fore the emergence of the subharmonic lies between these last two values. These 
figures indicate that the fundamental may grow to an appreciable size relative 
to the mean flow. 

Our model is based upon the above comments and is as follows. Linear, inviscid 
stability theory is assumed to give the correct wave-number of the initially most 
unstable disturbance. We then appeal to a non-linear mechanism which selects 
this wave-number for amplification and causes the disturbance energy to be 
more sharply centred a t  this wave-number than might be expected on the basis 
of linear theory (cf. Segel(l962) for a discussion of this mechanism in the thermal 
convection problem). The disturbance grows rapidly relative to waves whose 
wave-numbers are near to its own until it  approaches a state close to finite- 
amplitude equilibrium. We then have a picture of a flow composed of the basic, 
parallel component and a non-parallel component, whose nearly periodic be- 
haviour with time and in the direction of flow are characterized by, respectively, 
the frequency and wave-number of the fundamental instability. 

42-2 
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The above flow occurs only for a certain value of the amplitude of the primary 
disturbance. However, we shall regard this amplitude as a parameter and con- 
sider how the magnitude of the periodic component affects the growth rate of 
disturbances associated with the mean, parallel flow component. It will be shown 
later that the periodicity exerts its greatest influence upon a wave with half of 
its own wave-number. While this result can be established without specifying the 
details of the periodic flow, we shall apply the result to experiment by setting the 
wave-number of the periodic flow equal to  that of the fundamental. We shall 
then calculate the amplitude of the periodicity required to make the growth rate 
of the subharmonic exceed that of the most unstable disturbance associated with 
the mean, parallel flow. If this critical amplitude compares reasonably well with 
the measured values of the fundamental before the emergence of the sub- 
harmonic, we shall conclude that the periodic flow associated with the funda- 
mental can serve as a means by which further energy can be extracted from the 
mean flow and fed into a wave of longer wavelength. 

2. Formulation of the stability problem 
We define a stream function $(x, y, t )  so that 

u = a$py, v = -a$lax, (2.1) 

where x is in the direction of the mean flow, y is normal to that direction, and ZL 

and v are the corresponding velocity components. We shall assume that the flow 
is two-dimensional. Although Sato (1959) states that the fluctuations in the non- 
linear region were of a three-dimensional type, he does not present any data 
which could be employed in our model to reflect this feature. The more recent 
results of Browand (1966), however, show that the flow retains its two- 
dimensionality during the emergence of the subharmonic oscillation. The results 
of this paper indicate that the emergence of the subharmonic can be predicted 
quite well on the basis of a two-dimensional theory. 

For the moment, we consider a basic flow $,(x, y, t )  which is assumed to be a 
solution of the equations of motion. Thus $ = +,(x, y, t )  satisfies 

We now assume that this flow is perturbed by a disturbance of O(E) and 
attempt to find a solution by expanding as 

$(x, y, t) = $I@, y, t )  + q+I(X,  y, t )  + W2). (2.3) 

The perturbation stream function of O(E)  then satisfies 

We note two features of (2.4) which are peculiar to the case a$,lax $: 0. First, 
the equation is of the third order with respect to y and would therefore seem to 
require three boundary conditions, in contrast to the two required for the case of 
a parallel basic flow. Secondly, the term a$,/az multiplies the highest derivative 
with respect to y. Hence, if an expansion is attempted which regards the ampli- 
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tude of the basic periodic flow as small in some sense, the expansion may well be 
of a singular-perturbation type. 

However, in this paper, we shall consider only unbounded shear flows. The 
linear stability characteristics of such flows are predicted quite well by inviscid 
00w analyses. The boundary conditions which are imposed when $o = $.,(y, t )  
are 

which imply that co for disturbances periodic in the flow direc- 
tion. While these two conditions are sufficient to obtain a solution, at least when 
the basic velocity profile has a point of inflexion, we should realize that a plausible 
consequence in the problem considered of the above boundary conditions is that 

12.5) a$,/ax+O as y - f  &coy 

0 as y - f  

a$l/ay+O as y - f  +oo. (2.6) 

But these are the additional boundary conditions which would be applied in the 
viscous problem. In other words, the inviscid solution for the case of a free shear 
layer satisfies the boundary conditions applied to the viscous solution. We shall 
approach (2.4) from this point of view and presume that the solutions obtained 
through application of (2.5) will also satisfy (2.6). Thus, the question of a third 
boundary condition suitable to (2.4) is not considered further. 

Viscosity will also be invoked to remedy any singular behaviour resulting 
from a perturbation analysis. The governing equation would not be a singular- 
perturbation type with regard to a$o/ax if the viscous terms were included. 
Schade (1964) also found that viscosity had to be included at the critical layer in 
his otherwise inviscid, non-linear analysis. 

We now consider a case for which $o(x, y ,  t )  may be expressed by an expansion 
such as 

in which IS1 < 1 but 161 9 181. Thus, we shall assume that the amplitude of the 
disturbance is small compared to the magnitude of the periodicity. Now, (2.7) 
may represent the expansion in terms of 6 of any exact solution to the inviscid 
flow equations. For instance, Stuart (1966) has found such an exact solution in 
the form 

where C is an arbitrary constant. Thus, (2.7) might represent the expansion of 
this solution for moderate values of (C2- l)*/C (in the limit C2+ 1 + P, a2 < 1, 
the O(S) term in the expansion of (2.8) is the neutral eigensolution associated 
with the flow $oo = In cosh y) .  

In  this paper, (2.7) will be later taken to represent the flow resulting from 
finite-amplitude growth of the primary disturbance associated with the parallel 
flow Uoo(y) = tanh y .  Schade (1964) has considered the nature of such growth by 
expanding 

uo(x, y , t )  = uoo(y)+ IA12u,#(y)+ ... +A(uol (y)+ IA12u&y)+ ...)eiax 

(2.7) $ o h  Y 9 t )  = $oofY) + W O l ( X >  Y 7 t )  + 0(S2)7 

$o(x, y )  = In [C cosh y + (C2 - l)* cos XI, (2.8) 

+ (A2uO2(y)  + ...) esiaz+ ... +complex conjugates, (2.9) 

where A = A(t). On the basis of the previously mentioned experimental evidence, 
we shall assume that A ( t )  tends to a constant as t -f 00 when a has the value of 
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the initially most unstable wave. Now uol(y) denotes the eigensolution corres- 
ponding to the linear stability problem. Because representative values of [ A  \ 
are 0.1-0-2, we shall neglect terms of 0 ( S 2 )  N O( lAI2) in our analysis and assume 
that the flow can be modelled by superimposing uol(y) exp (im) together with 
its conjugate upon the basic parallel flow. The analysis could be extended, how- 
ever, to include the higher-order terms, and a conjecture concerning their effect 
will be made in the appropriate place. 

While the amplitude IAl in (2.9) actually has a numerical value as t-tm, we 
shall regard 6 in (2.7) as a parameter in order to investigate the stability of (2.7) 
by means of a perturbation procedure. Thus, (2.7) will not be a solution of the 
equations of motion for all values of 6. However, we shall interpret the results 
for a certain value of 6 when (2.7) represents the flow (2.9) and is therefore 
assumed to be asymptotic to a solution of the equations of motion. 

An approach similar to this has been used by Greenspan & Benney (1963) in 
their work concerning the onset of turbulence in boundary-layer flow along a, 
flat plate. They considered the stability of an unsteady, parallel flow shear profile. 
By itself, this flow would not be a solution of the equations of motion. However, i t  
was taken to be representative ofthe flow observed experimentally just before the 
onset of turbulence and therefore also of some solution to the equations of motion. 
The results were interpreted by assigning empirical values to the various para- 
meters entering into their analysis. Similarly, we shall first consider the stability 
of (2.7) in a rather general manner, and then consider a special case for which this 
flow has some meaning on the basis of both theory and experiment. 

When $.,(x, y, t )  is given in the form (2.7), we can consider obtaining a solution 
to (2.4) by expanding 

(2.10) @lb, y, t )  = $lO(G Y, t )  + W,l(G Y, t )  + W), 
where each term must satisfy (2.5). Thus, $lo(x, y, t )  represents any solution of 
the linear stability equation 

(2.11) 

in which a prime denotes differentiation with respect to y. We assume that 
$to(y) vanishes for some value of y so that there are solutions to (2.11) of the 
form 

where a tilde denotes the complex conjugate and B is an arbitrary constant. 
It should be remarked that in assuming (2.12) as the zero-order solution of 

(2.4) we also assume that the terms of O(6) and higher in (2.7) merely shift and 
do not eliminate the inflexion point associated with $oo(y). The importance of 
this restriction can be realized by considering the special case $ol = $ol(y). We 
then know that there are no eigensolutions which grow with time if $t(y) does 
not vanish for some value of y. The perturbation procedure used in this analysis 
would be invalid for the rather special case when the higher-order terms in (2.7) 
eliminate the inflexion point of the velocity profile. 

The general characteristics of the solutions (2.12) for various parallel flows are 

$lO(~,~,t) = ~ ~ ~ o ~ y ~ ~ ~ ~ { ~ ~ o ~ ~ - ~ o ~ ~ ) + ~ ~ , o ~ y ~ ~ ~ p { - ~ a o ~ x - ~ o t ~ ~ ,  (2.12) 
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known (cf. Drazin & Howard (1962) for a survey). However, not many solutions 
have been calculated in detail, and it is clear that we must have detailed know- 
ledge concerning the eigensolutions in order to proceed further. One case for 
which quite specific knowledge is available and which is similar to the separated 

(2.13) 
shear flow is the flow given by U,, = tanh y .  

The stability characteristics of this flow with respect to disturbances which 
grow with time have been calculated by Betchov & Szewczyk (1963) and by 
Michalke (1964). In  the former analysis, the authors found that the phase veloc- 
ity, c,,~, was zero for their eigensolutions for a wide range of Reynolds numbers. 
This fact tends to confirm the result of Tatsumi & Gotoh (1960) that the phase 
velocity is zero for all disturbances which grow with time in the case of anti- 
symmetric shear flows. Tatsumi & Gotoh essentially showed that, if a solution 
exists for some non-zero value of c,,~, a second solution must exist for the same 
value of wave-number and with the same growth rate but with c,,~ of the opposite 
sign to that of the first solution. Such solutions have not been found for growing 
disturbances in the case of antisymmetric shear flows with one inflexion point, 
although Gallagher & Mercer (1962) have found such solutions which decay 
with time in the case of plane Couette flow. Hence, the conclusion that c,,~ = 0 
for such flows in the case of temporally growing disturbances seems justified. On 
the other hand, a similar conclusion would seem unwarranted for the case of 
spatially growing disturbances. It would then seem reasonable to expect that, if 
a solution exists with > 0 and which grows, or decays, in the positive x- 
direction, a second solution should exist with c,,~ < 0 which grows, or decays, 
respectively, in the negative x-direction. The question of whether such solutions 
exist for the present flow is discussed in the appendix to this paper. It is con- 
cluded there that such solutions exist but that they are damped in the respective 
directions. Because of this result, we shall proceed on the basis that the eigen- 
solutions corresponding to temporally growing disturbances describe completely 
the unstable behaviour of the flow (2.13). At a later stage, we shall consider the 

(2.14) velocity profile given by U, = 0 q 1 +  tanh y ) ,  

which is closer to the separated shear-layer profile and for which the disturbances 
have a non-zero phase velocity. We shall then discuss whether the results of our 
temporal growth analysis can be related to the behaviour of spatially growing 
disturbances which are observed in experiments concerning separated shear 
layers. 

The equation for $ll(x, y ,  t )  is 

It is clear that the form of the solution for $ll(x, y ,  t )  will depend greatly upon 
how $ol(x, y ,  t )  and $lo(x, y, t )  interact, and we shall now discuss the possible 
interactions in detail. 
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3. Discussion of interactions 

periodic flow, we let $ol(x, y, t )  be a function of the form 
In accordance with our earlier remarks concerning the representation of the 

$01(x,y, t )  = $ol(Y)exP{i(px-rt)}+~ol(y)exP{-i(px-rt)}, (3.1) 

in which ,8 and y are taken to be real. We shall later take p to  represent the wave- 
number of the fundamental disturbance, y the corresponding frequency, and 
q501(y) the eigenfunction associated with p in the linear, parallel flow stability 
analysis. From (2.15), (2.12) and (3.1), it would seem sufficient to assume that 
$,,(x, y, t )  is of the form 

$ll(%, Y, t )  = $ll,u(Y) exp [i{(ao + P )  x - (Y +aoc,) t>I 
+$ll,b(Y)eXP [ i ( (ao -p )x+  (y-aoco)t} ]  +conjugate terms. (3.2) 

In  general, $ll(x, y, t )  will grow or decay with time in the same manner as the 
eigensolution $lo(x, y, t )  associated with the mean flow. Although small-ampli- 
tude waves of O(6) and of wave-number a, & /3 will therefore appear, the pre- 
dominant wave will still have the wave-number of the most unstable wave as 
predicted by the parallel flow analysis. Attention will therefore be restricted to 
the cases for which the form of (3.2) becomes invalid. Such cases arise when the 
exponential factors {a, f p, aoco k y}  are eigenvalues associated with the linear, 
mean stability problem, i.e. the homogeneous part of (2.15). A solution would 
then be possible only if the non-homogeneous terms were orthogonal to the solu- 
tion of the homogeneous adjoint equation (cf. Ince 1956, $9.34). Because this 
condition will not be met in general, the form of (3.2) must be revised. One could 
satisfy the orthogonality condition by assuming that $ll(x, y, t )  has a ‘secular’ 
behaviour with time or distance. Such behaviour could be incorporated into the 
above solution by redefining $11, j(y) so that 

$11, Ax, Y, t )  = $8 j (Y)  + 4 i ?  AY) + t$i? j(Y)i=u,a. (3.3) 

The last two functions on the right-hand side of (3.3) would be chosen so that the 
orthogonality condition is satisfied. Assuming that such a solution is possible it 
would indicate that the growth rate of the disturbance is altered considerably. 
We shall later follow a different procedure which allows this feature to be reflected 
in the growth rate of our zero-order solutions (2.12). 

The physical process consists of the periodic flow interacting with waves 
associated with the mean flow so as to produce waves of the same wave-number 
and frequency as the latter, which therefore tend to be reinforced. The possibility 
of resonance thereby arises. 

The mechanism is somewhat similar to that discussed by Raetz (1959; cf. 
Stuart 1962, for further discussion) in connexion with the instabilities which 
occur in boundary-layer flow on a flat plate and by a number of authors in con- 
nexion with non-linear gravity wave interaction (cf. Ball 1964, for the many 
references concerning this problem). Raetz pointed out that the interaction gives 
rise to secular growth of the resonant disturbance. Benny & Niell (1962) have 
shown, however, that the interaction is equivalent to an energy-sharing mechan- 
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ism between the various modes. In  our special case of interest, the data shown in 
figure 1 indicates that the energy of the fundamental remains almost constant 
while the subharmonic emerges. This fact suggests that energy is not being shared, 
but that the periodic flow associated with the fundamental permits further energy 
to be extracted from the mean flow and fed into the subharmonic disturbance. 
Our theory differs from that of Raetz because he considered the interaction be- 
tween growing disturbances, each of which was an eigensolution to the linear, 
parallel flow stability problem. Here the interaction takes place between the 
periodic flow, assumed to have arisen from finite-amplitude growth of the funda- 
mental disturbance, and other disturbances which grow rather slowly with time, 
relative to the initial growth of the fundamental. 

Let us consider now the conditions under which the exponential factors in (3.2) 
can be eigenvalues of the homogeneous part of equation (2.15). To do this, we 
let (a;, c;) denote any possible pair of eigenvalues for the linear, parallel flow 
stability problem. Then, from (3.2), the conditions can be listed as 

p = f (a$-a,), y = f (a;c;-a,c,), (3.4) 

p = *(aS+a,), y = f (a;c;+a,z()), (3.5) 

in which the ( + ) or ( - ) sign occurs simultaneously with both p and y. Relations 
conjugate to (3.4) and (3.5) are obtained when the conjugate solution (a;, c;) is 
considered. 

It is simplest to discuss two possible cases which arise depending upon whether 
we take a, = a; or a, + a:. Consider first the former case. 

(3A) a, = a;, c, = c; 

In this case, we investigate how the periodicity, with wave-number p, interacts 
with a wave of wave-number a, to produce a wave of the same wave-number, a,. 
Condition (3.4) is not of interest here because it essentially concerns the problem 
of how the stability characteristics of a given parallel flow, $,,(y), are affected 
by the superposition of a second parallel flow, $ol(y). While the methods des- 
cribed later can be applied to this problem, it is clear that no insight into novel 
physical phenomena would result. 

Condition (3.5) is, however, quite different. Not only is y real, as required by 
our model, but the wavelength of the periodic flow is exactly half of the wave- 
length of the wave undergoing resonance (we now use this word for convenience; 
it does not necessarily imply an increase in growth rate, as later results will 
indicate). For the special case of an antisymmetric shear flow, the phase velocity 
is independent of wave-number. If the phase velocity is non-zero, the frequency 
of the resonant wave would be half that of the periodicity, as we expected on the 
basis of Sato's results. 

The stability diagram for the flow (2.13) is shown in figure 2. The diagram is 
based upon the calculations of Michalke (1964). The fundamental disturbance 
has a wave-number of 0.4446, which we shall later equate to /3. Thus, the resonant 
wave would have a wave-number of 0.2223. 
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(3B) a, =k .o* 
We now consider the possibility of the periodicity interacting with a disturb- 

ance of wave-number a, to produce a wave of wave-number a$ equal to the wave- 
number of some other growing disturbance. 

This case is more dependent upon the particular flow considered, and we shall 
discuss it with reference to figure 2. Condition (3.5) is then not applicable when 
/3 corresponds to the wave-number for maximum growth, for we would have to 

0 0.2 0.4 0 6  0 8  1 -0 
a 

Michalke 1964.) 

take both a. and a: less than /3, thus ensuring that y would be complex. This 
would violate the conditions of our model. On the other hand, condition (3.4) 
would seem to be of importance for our particular flow. In  order that y be real, 

This requires that we take a, greater than ~3 and a: less than /3, or vice versa. In 
fact, for the flow with a hyperbolic-tangent profile, the conditions are approxi- 

or vice versa. The distinctive feature of this case is therefore that the periodicity 
might promote simultaneously resonance in two different waves. One wave would 
be of greater wavelength than the basic periodic flow, whereas the second would 
be of smaller wavelength. 

For convenience, we shall refer to the above cases as A and B, respectively. It 
is interesting to note that the lower value of wave-number in case B differs 
from the value given in case A by only 5 yo. We shall therefore speculate on the 
possibility that this difference might be smoothed out in reality and consider the 
consequences of both of these interactions occurring for the same lower value of 
wave-number. We shall refer to this case as ‘case C’. 

FIGURE 2. Temporal growth rate of disturbances to the flow U,(y) = tanhy. (From 

we must have ag~o*,~  = aoco,i. (3.6) 

mately satisfied for = 0.234, a, = 0.679, (3.7) 
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The various interactions are shown diagrammatically in figure 3. Later results 
will show that case A is the most important, at least as far as disturbances which 
grow with time are concerned. 

Case Wave-numbers of 
interacting waves 

Wave-number(s) of 
reproduced wave@) 

A Basic periodic flow: p ao=PP 

Disturbance: a0 = 812 

Basic periodic flow:/? 

Disturbance: a. > p 

Basic periodic flow: P 

Disturbance: < P 

a: = a. -P 

Mg=a:$.P 

M$ = 812 >--- Basic periodic flow: /l 

Disturbance: [x0 = 3a/2 

Basic periodic flow : P 
Disturbance: a: =pi2 

M: = ,912 and a. = 3812 

FIGURE 3. Interactions which might cause resonance. 

The case B interaction resembles the type of resonance phenomenon discussed 
in previous investigations concerning non-linear wave interaction (e.g. Raetz 
1959), whereas the resonance described under case A has greater resemblance to 
parametric amplification phenomena. For an example of parametric resonance 
in the case of an unsteady but parallel Kelvin-Helmholtz flow, the reader is 
referred to a previous paper by the author (1965). In  that paper, emphasis was 
placed upon the importance of the interaction between the flow oscillations and 
the dispersive nature of the waves. Because a group of non-dispersive waves can 
always be regarded as being steady by means of a simple translation of axis, the 
introduction of another frequency (namely that of the flow oscillation) should 
not be expected to affect them significantly. In  the present paper, however, the 
basic flow is considered to vary both with time and distance in the flow direction. 
The chances for the occurrence of the duplication mechanism are much greater 
when non-dispersive waves are involved, simply because the condition on fre- 
quency is rather unimportant and can be easily met. Indeed, it would seem un- 
likely that case A could occur for flows with dispersive waves. For instance, when 
we consider the stability of a full jet flow (Lessen & Fox 1955), we find that the 
phase velocity of the most strongly amplified wave is approximately 50 % greater 
than that of a wave with half the wave-number. This difference precludes the 
mechanism discussed in case A from being operative (the case B interaction also 
does not arise for this flow). 
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It is perhaps appropriate to comment here briefly on the possible interaction 
of two growing disturbances of different wave-number so as to cause a third 
wave to resonate. This is exactly the mechanism discussed by Raetz (1959). With 
reference to figure 2, it  is clear that any wave with wave-number less than that 
for maximum growth (i.e. a < 0-4446) can interact with a wave of sufficiently 
small wave-number so as almost to reproduce itself. Similarly, a wave with wave- 
number near a = 0.5 can interact with a wave sufficiently near the neutral dis- 
turbance so as almost to reproduce itself. Computations, based upon figure 2, 
indicate that these are the only possibilities. In  either case, the interaction would 
involve one wave which we can reasonably expect to be of quite small amplitude. 
This type of interaction should therefore be unimportant for the present problem. 

We have also discussed only how the periodic flow might affect the behaviour 
of growing disturbances associated with the mean flow. Interaction might also 
occur for decaying disturbances in certain flows, but the effect should be un- 
important except when the amplitude of the basic periodic flow is quite large. 
At any rate, such interaction is irrelevant to the specific flow discussed in this 
paper, Hence, we omit discussion of the interaction with waves whose wave- 
numbers are greater than the neutral value or with the low-wave-number, 
damped waves discussed by Tatsumi, Gotoh & Ayukawa (1964). 

4. Analysis of case A 
We anticipate that the departure of the growth rate of the resonant disturbance 

from the value predicted by the parallel flow analysis will be of O(S) and therefore 
introduce the additional variables 

2 = Sx, t "=  St, (4.1) 

to reflect this change. Thus, we shall employ the technique of multiple scaling, 
as discussed with regard to ordinary differential equations by Cole & Kevorkian 
(1963). We now define 

With reference to (2.4), the equation for 

(4.2) $1 = $l(X,%t",Y). 

is now 

We now expand as 

$l = B(D, 0 $lo(y) exp {$a(. - ct)}  + B(D, 8) filo(y) exp { - ia(x - ~ t ) )  
+~$ll(X,%t,f,Y)+ * * a ,  (4.4) 

$l = B $ ~ ~ E + B ~ ~ ~ ~ E + s ~ ~ ~ + . . .  . (4.5) 
which we denote as 

Thus, the zero-order solution consists of any eigensolution associated with the 
mean flow but multiplied by slowly varying functions of B and f. These functions 
will be determined by ensuring that the previously mentioned orthogonality 
condition is satisfied for the special case of resonance. 
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We have here dropped the subscripts on the eigenvalues because we wish to 
investigate to some extent how the basic periodic flow affects waves with wave- 
numbers close but not exactly equal to that of the resonant wave. Thus, we now 
take our conditions as 

p =  2a,, y = 2a,c,,,, a = a,+a,, la I < a  
(4.6) 

c = c,+c,, lCll l <  N Ola,). O 7  I 
Let us first briefly digress from our argument and consider how the eigensolutions 
of the mean flow for given (a, c )  can be related to the eigensolutions for (ao, c,) 
when the above conditions are applicable. We could expand in terms of a, as 

$ l O ( Y )  = $10,0(Y)+~,$,,,,(Y)+ o m . 7  (4.7) 

where (a,, c,) are the eigenvalues corresponding to $,,, ,( y). The relation between 
a, and c1 would then be determined while solving for $,,,,(y). In  the special case, 
however, when $,,, ,(y) corresponds to the neutral disturbance, the desired rela- 
tion has been given by Lin (1955, $8.2) and is 

where ys is the position of the inflexion point, a, is the neutral wave-number, and 
P denotes the principal value of the integral. 

For the particular case 

$6, = tanh y, as = 1.0, $s = sech y, c, = 0, (4.9) 

the above relation gives c = - i(a2- l)/n. (4.10) 

(The result given in 5 7 of the paper by Drazin & Howard (1962) is in error by a 
factor of two.) If we now take a = 1 +a,, lall 

c1 = - 2ia1/lr (4.11) 

to O(a,). For future reference, we write out the zero-order terms in the expansion 
(4.4) for the special case (4.9) 

1, we have 

$1, = B(%f)  {sech Y + “1 $10, 1) exp (4 1 + a,> It: - (2% t / @ )  
+&9,i){sech y+a,~,,,,)exp{ -i( l  +a1)%- (2a1t/n)}. (4.12) 

The function $,,,,(y) will not be required for the following analysis. In  principle, 
results analogous to (4.12) can be obtained when a, < 1.0. 

Returning now to (4.3) and (4.5), the equation for $,,(~t:, 9, t, f, y) can be written 

+ conjugate terms involving @ , E ,  &,). (4.13) 
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We take @ol(~ ,y , t )  to be of the form (3.1). Now if a1 N 0(6), we can let a+ao, 
c+co, and $lo-+$lo,o in the right-hand side of (4.13). Further, we have 

Eexp{-i(/?x-yt)} = (9) exp{2ialx- 2i(a1c0,1.+a0c1,,) t}. (4.14) 

Thus, E exp { - i(Px - yt)) will differ significantly from d only over, say, a length 
scale large compared to ail. We denote this fact by writing 

E exp{ -i(,%-rt)) = (9) (1 + 0161). (4.15) 

We shall restrict the magnitude of a, by the condition that a1 N 0161 in the 
following work. 

For the conditions given in (4.6), we can then take the solution to (4.13) to be 
of the form 

@11 = $ l l , b ( 2 , f , Y ) E + $ l l , b ( 2 , i , Y ) 9  
+$ll,&f, y) EexP{~(P~- r~ )}+$11 , , (~ , f , y )~  exp{-i(Px-yt)). (4.16) 

The exponential factors of the last two terms are assumed not to be eigen- 
values of the homogeneous equation for case A .  Hence $ll,a and $ll,a might be 
obtained without any essential difficulty arising. The equation for $ll,b(2, i, y) 
is, to O(6) 

iao(4Ao - co) (&, b - a: $11, b )  - iao @to $11, b 

= - ( a m %  (9;o - aW0) + (amw (2": W h o  - co) $10 - co(#;o - 4 $10)) 
+ ;a0$;1(&0 - a: $10) B + i P $ O l ( & O  - 4 $Io) B 
- N$bl -P"01) &oB - iao($t1- P"zA1) $lOB. (4.17) 

The equation has the homogeneous solution $ll,b N $lo(y). In  order that a solu- 
tion exists for (4.17), a necessary and sufficient condition is that the right-hand 
side of (4.17) be orthogonal to the solution Ol0(y) of the homogeneous adjoint 
equation (cf. Ince 1956, §9.34), which, for the above case, is 

} (4.18) 
~ @ h o - ~ o ~ ~ @ I O - ~ : ~ l , ~ + ~ @ ~ o ~ I ,  = 0;  

@',,-+O as y++oo. 
The solution to (4.18) is 

q0 = ~ $10 (4.19) 
4ho - co' 

The necessity of the orthogonality condition can be realized by writing (4.17) in 

(4.1 7 a) the form. 

ml, = 0 ( 4 . 1 8 ~ )  and (4.18) in the form 

then one can easily show that for our boundary conditions 

- w l l , b  = r(Y) 

I", @ l O W l l , b d Y  = J m  --a, $ll,b~@lOdY = 0. 

We therefore obtain the necessary condition 

(4.20) 
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After imposing this condition in (4.17), we obtain the following equation for 

BP, 0 Q(aB/at") + H(aB/aO) - iNB = 0, (4.21) 

along with its conjugate. We have defined 

(4.22) 

(4.23) 

m 

-PJm ($:l -P2$01)  4 0  Ql0dY - aoJ-m (#ll - P " a  610 QlOdY. (4-24) 
- W  

From (4.21) and its conjugate, we can write the governing equation for B(B,t") as 

(4.25) 

Thus, if we take B(O, i) of the form 

B(O, i) - exp (A& +pi), (4.26) 

the characteristic equation relating h and p is 

IQ)2pz+2(QB),  hp+ 1H)2h2 = )XIz. (4.27) 

We have here allowed the resonance to be manifested by both spatial and 
temporal growth of the disturbance, although only the latter behaviour is usually 
considered directly in theoretical analyses concerning the stability of fluid flows. 
For real p and A, the maximum growth with 2 or t" may be found by setting p or 
A, respectively, equal to zero. If h is imaginary, we are effectively changing the 
wave-number of the disturbance and so expect, from figure 2, the growth rate to 
change. For the present case we shall look at a disturbance of fixed wave-number 
and frequency and so take h and p to be real. 

In  general, further progress can be made only by numerical evaluation of the 
above integrals, Before considering the results of such calculations, it  is worth 
while first to consider a hypothetical case in which the periodic flow causes the 
neutral disturbance associated with the mean flow (2.13) to resonate. Because 
analytical determination of Q and M is then possible, we can obtain some idea of 
how the periodic flow affects waves with wave-numbers close but not exactly 
equal to the resonant value. It should, of course, be realized that the case is 
strictly hypothetical, because, with reference to figure 2, we see that a disturb- 
ance whose wave-number is twice the neutral value tends to be strongly damped. 
The analysis is intended only for the purpose of discussion. 

For the flow (2.13), the neutral solution is described by (4.9), and the adjoint 
solution is 

Qlo(y) = cosech y (4.28) 

which is singular as y -+ 0. In  order that finite values of Q and M can be obtained, 
a viscous correction to Ql0(y) must be made, or, alternatively, the integrations 
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may be made below the critical point in the complex plane, thus ensuring that 
we take the limit c,+O from above (cf. Lin 1955, $8.2, $8.3). Schade (1964) has 
given the details of the first approach for the present flow. He has shown that 
the adjoint solution, with the viscous correction, is 

Ql0, COIr = i YL( Y) cosech y (4.29) 

where Y = y/a, cr being a small parameter equal to (aR)-) and R the Reynolds 
number. The function L( Y )  is the Lommel function, whose real and imaginary 

(4.30) 
parts behave as 

for Y + a .  We see that (4.29) tends to (4.28) in this limit. On the other hand, 
L(0) is finite, and so (4.29) is finite as y+O. 

We can now evaluate (4.22) through the use of (4.29) and the knowledge that 
L,( Y )  is even while L,( Y) is odd. 

L, N -2/Y4, L, N - l / Y ,  

OD i g Y L ( Y ) & Y  
dy = - 2  lim 

iYL( Y )  Jmm cosh3 y sinh y gF+oJ-m c o s h m s i n h ( g Y )  
& = - 2  

m 

= - 2 i J - m 4 ( Y ) d Y  = -2in. 

/b sech2 ydy = - 4. We also have M = - 2  

The characteristic relation is then 

(4.31) 

(4.32) 

4n2p2+ 16h2 = INI2. (4.33) 

This result indicates that although the disturbance might grow both spatially 
and temporally it must at least grow either with time or with distance in the 
direction of flow. It is customary to discuss disturbances which grow with time. 
If we take h = 0, we can state with reference to (4.12) that @lo behaves as 

(4.34) 

The choice of signs reflects essentially the arbitrariness of the sign of S. Thus, 
there are two solutions but one will always grow faster than the other. On the 
basis of (4.34), we can say that the neutral wave-number is shifted in this hypo- 

(4.35) 
thetical case so that 

to O(S). Thus, the periodic flow considered is unstable with respect to disturb- 
ances with a wider range of wave-number than is the associated mean flow. 

We also see from (4.34) that slightly unstable waves (al < 0) will have their 
growth controlled to a greater extent by the instability connected with the mean 
flow as lal[ increases. In  the rest of this work, we shall consider only waves which 
meet exactly the conditions for resonance. However, it should be remembered 
that the above analysis indicates that waves which almost meet the requirements 
for resonance can also be destabilized. 

Having established this point, we now consider cases of greater interest that 
require the numerical evaluation of (4.22)-(4.24). In  order to consider the effects 

a, = 1 +glNSl 
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of the finite growth of the primary instability of the flow (2.13), we take 
/3 = 0.4446, a, = 0.2223, and $ol(y) to be the eigenfunction associated with the 
most unstable disturbance in the parallel flow analysis. Thus, the effect of finite- 
amplitude growth on the shape of the fundamental disturbance is neglected. 
With reference to (2.9), we expect that such distortion should be of O ( P ) ,  which 
is of higher order than the effect of such growth on the mean flow. 

The numerical calculations were generously performed for the author by Prof. 
W. C. Reynolds on an IBM 7094. The eigenfunctions were determined by inward 
numerical integration of the linear stability equation, using the eigenvalues given 
by Michalke (1964). The equation was reduced to a pair of first-order differential 
equations, and a four-point Adams predictor-corrector scheme was employed. 
The integration began at y = 8.0 with the known asymptotic form of the solu- 
tions and used 400 steps. The eigenfunctions, which are composed of real sym- 
metric and imaginary antisymmetric components, were normalized so that 

= 1, $40) = 0 (4.36) 

so as to agree with the normalization used by Michalke (1964). The eigenfunctions 
are shown in figure 5 of his paper. The integrals were then calculated by means of 
Simpson’s rule and the known asymptotic behaviour of the various functions for 
large y.  The program was written in Fortran IV, using the automatic complex 
arithmetic provisions. 

“ 0  P Q M N 

(1) 0.2223 0.4446 - 1’2312i 0.4813 -0.3302 
(2) 0-2223 0.4446 - 1.23122: 0.4813 -0.3111 
(3) 0.50 1.0 - 3.5594i - 0.2800 - 3.4342 

hl,=o Icl,=o 
(1) t 0.6860 a 0.2682 
(2) 0.6464 0.2527 
(3) & 12.26 a 0.9648 

TABLE 1 

The results are given in table 1 on line (1) .  Let us again consider only disturb- 
ances which can grow with time, so that 

+lo $ l O ( Y )  exp @ox + (aoc0 , i  5 t>. (4.37) 

From figure 2, we see that a,c,,+ E 0.15 for a, N 0-22, whereas the maximum 
growth rate is approximately 0.19. Using the calculated value of p, we find that 
the total growth rate for the subharmonic wave is approximately equal to the 
maximum growth rate predicted by the parallel flow analysis when 6 N 0.15. 
For values of S below this value, we can say that the most unstable wave associ- 
ated with the periodic flow has the same wave-number as that associated with 
the mean flow. A plausible conclusion is that the periodic flow will remain distin- 
guished for the most part by the wave-number /3 = 0.4446 for 6 < 0.15. For 
S > 0.15, however, the subharmonic wave will be the predominant instability 
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associated with the periodic flow. The flow will then be mainly described by the 
two wave-numbers $ = 0-4446 and a. = 0.2223. 

We shall now use this threshold value of 6 in order to estimate the amplitude 
required for the periodic flow to make the growth rate of the subharmonic wave 
predominant. The basic flow can be expressed as 

(4.38) 

where $ = 0.4446. From figure 5 of Michalke’s (1964) paper, we estimate that the 
maximum value of Iaq5,,/ayI is about 0.8. Thus, a value 6 = 0.15 implies that the 
amplitude of the fundamental disturbance must be approximately 12 yo of the 
velocity difference across the shear layer. This estimate is above Sato’s (1959, 
figure 17) measurement of the root-mean-squared value of the disturbance (3- 
10 yo) in the non-linear region upstream of the subharmonic region and below 
Schade’s (1964) theoretical estimate of the possible equilibrium amplitude of the 
fundamental disturbance (17 yo). 

In  order to compare the estimated value of 6 with experiment, we should first 
apply our results to the flow 

Uo = 0-5(1+ tanhy) (2.14) 

and then consider disturbances which grow spatially in the downstream direc- 
tion. The growth rates of disturbances to the flow (2.14) which grow with time 
are half of the values given in figure 2. We also now have c ~ , ~  = 0.5. By inspection 
of (4.22), (4.24) and (4.27), we see that the value of p for h = 0 is equal to that 
given in table 1. Hence, the threshold value of 6 is 0.075, and the corresponding 
amplitude of the streamwise component of the periodic flow remains about 12 yo 
of the mean velocity difference, as far as disturbances which grow with time are 
concerned. 

The relation of the present results to disturbances which grow spatially is not 
so straightforward for several reasons. First, while the possibility of spatial 
growth has been included in our analysis for the sake of generality, the actual 
estimation of the spatial growth factor ( A  in table 1) is unreliable because it was 
made by use of the eigenfunctions associated with temporally growing disturb- 
ances. If we do take this value, scale it so as to be appropriate to the flow (2.14), 
and match the spatial growth rate of the subharmonic to that of the maximum 
permissible as predicted by a parallel flow analysis (see appendix), we find that 
the critical value of 6 is about 0.10. It is, however, doubtful whether the spatially 
growing disturbances associated with the flow (2.14) can even be involved in the 
mechanism of resonance which was discussed in $3. As shown by Michalke 
(19653) and in the appendix to this paper, the spatially growing disturbances 
show a distinct variation of phase velocity with wave-number, so that the fre- 
quency for waves with go,, less than 0.4446 can be greater than 0-5a0,, by as 
much as 40 yo. For waves with aO,, greater than 0.4446, the frequency is some- 
what less than 0*5a0,,. This dispersive character of the spatially growing solutions 
means that the conditions for resonance, as set forth in $3, are unlikely to be 
satisfied. 
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On the other hand, there seems to be little reason to jettison the mechanism of 
resonance discussed above, for it does point to the existence of a subharmonic 
oscillation, has appeal on a physical basis, and does predict a critical amplitude 
for the primary disturbance which agrees reasonably well with experiment. One 
possible path out of the present difficulties lies in noting that, as shown by 
Michalke (1964, 1965b), the wave-number and frequency of the disturbance 
which undergoes maximum spatial growth differs from that which undergoes 
maximum temporal growth by only 10 yo. We have already shown that waves 
which almost satisfy the conditions for resonance can be destabilized. Hence, it 
is plausible that the flow associated with the primary spatial disturbance can 
promote a subharmonic oscillation which would then grow temporally with a 
growth rate proportional to the amplitude of the primary disturbance. Further 
calculations, in which the periodic flow is chosen to represent the velocity distri- 
bution associated with the fundamental spatial instability, would be required to 
judge the validity of this conjecture. 

To return now to our previous results, it  should be noted that they are valid, 
of course, only to terms of O(S). If terms of O(S2) were of significance, other inter- 
actions might become important, e.g. those with a, = p or a, = 3p/2. The situa- 
tion is similar to those involving parametric resonance phenomena, which are 
usually described by a differential equation of the Mathieu type (cf. Stoker 1950, 
chap. VI). In  such situations, there are an infinite number of possibilities for 
resonance; the subharmonic case, however, is usually the most important. 

Before leaving this case, we consider first two other results concerning the 
flow (2.13) and which are given in table 1. On the second line are the values ob- 
tained when a, = 0.2223 and p = 0.4446 but when gOl(y) is the eigenfunction 
associated with the neutral solution, i.e. q501(y) = sech y. This computation was 
done partly because Sat0 (1959, figure 15) measured a profile in the subharmonic 
region which resembled the neutral disturbance profile and partly because a 
standard for comparison was desired. As is evident, the actual value of ,u is only 
slightly less than in the previous case. Because the maximum value of Iaq5,,/ay( 
is  only about 0.5 for this case, the threshold value of the amplitude of the stream- 
wise component of the periodic flow is only about 8 %  of the mean velocity 
difference across the shear layer. The result indicates that the actual vorticity 
distribution associated with the periodic flow may not be of primary importance; 
the important factors are felt to be the periodic character of the flow and the non- 
dispersive nature of the waves associated with the basic parallel flow. 

On the third line of table 1, the results are given for a, = 0.5, p = 1.0, and 
q501(y) = sech y .  The result is of interest because it concerns the stability of the 
flow described by the exact solution (2.8) to the equations of motion in the limit 
C2+ 1 +a2. The periodic flow tends to reinforce the wave with a, = 0.5. The 
factor p is almost four times the value given in the previous calculations, and 
indicates that quite small values of 6 can shift the most unstable wave-numbers 
from 0.4446 to 0.5. While we might be tempted to regard this result as an indica- 
tion of how the neutral disturbance associated with the flow (2.13) interacts with 
the wave with a, = 0.5, we should remember that the amplitude of the neutral 
disturbance must also be allowed to vary during such interaction. In  this paper, 
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we have regarded the periodic flow as being of fixed amplitude because this seems 
to be true for our particular application (cf. $1). 

5. Analysis of case B 
As mentioned earlier, the results for cases B and C indicate that these inter- 

actions have less importance for the growth of the subharmonic wave. However, 
they are of interest because they indicate that satisfaction of the conditions of 
‘resonance’, as set forth in $3,  does not automatically imply increased temporal 
growth for the interacting waves. 

With reference to the discussion of $ 3 B, we now consider the interaction of the 
basic periodic flow, of wave-number p, with a wave of wave-number a. so as to 
produce a wave with wave-number a$ =l= a,, and vice versa. Both a. and a* are 
assumed to be possible eigenvalues of the parallel flow stability problem. Using 
the notation defined in (4.5) ,we write $l(x,  2, t ,  8, y) as 

$l = A$,,E + A$lo ,?? + B$To E* + B$& 8 * + a$,,, (5.1) 

for which the definition of E* is obvious. 

a$ are now related by 
The basic periodicity is again assumed to be of the form (3.1), but p, a. and 

,8 = ao-a$, a , ~ , , ~  = 01$c$,~, y = a o ~ O , r - ~ ~ ~ $ , r .  (5.2) 

(5.3) 

For our special case, a. and a$ are given by (3.7) and y = 0. The following identity 
now holds 

In  contrast to (4.16), we now write $l l (x ,  9, t ,  f, y) as 

exp{ - i(Px-yt))  E = E*.  

$11 = $11, b + $&, b E* + $11, a exp {i(px - y t ) )  
+$Tl,aE*exp{-i(,8x-yt))+conjugate terms. (5.4) 

The equations for the various components are obtained by substituting (5.1) and 
(5.4) into (4.3) and matching terms of O(6) with the same exponent. In  the present 
case, it  is assumed that only the first two terms of (5.4), together with their con- 
jugates, are involved in resonance. The exponents of the other two terms are 
considered not to be eigenvalues of the parallel flow stability problem. The 
equation for $11,b is 

iolO($hO-cO) ( # i l , b - a i $ l l , b )  -iaO?16$11,b 

= - ( W W  (#io - @ $ l o )  + ( a A P )  {2ai($Ao - co) $10 - Co(#io - 4 $10,) 

-i.~$A1(~T~-.$2$~o)B+iP$ol($T~-a$2$To’)B 

- i P ( & - P 2 $ 0 1 )  $%B+i4$%1-P2$h1) $GOB. (5.5) 

The equation for $ & b  is similar but with the following terms interchanged in 
turn wherever possible on the right-hand side 

( a O ~ C 0 7 A , $ 1 0 , $ O 1 7 ~ ) t f ( a $ ~ C ~ ~  B,$?07$O17 -p). (5.6) 

A homogeneous solution of (5.5) which satisfies the homogeneous boundary con- 
ditions is $11,b N $lo(y) .  Hence, the right-hand side must be orthogonal to the 
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homogeneous adjoint solution, (Dlo(y), for a solution to exist. A similar statement 
holds for the equation governing $&, b) except that the non-homogeneous terms 
must be orthogonal to @;o(y). The application of these two conditions gives rise 
to the following equations for A(2,t”) and B(6?,f), which may be compared to 
(4.21) : 

(5.7) 

(5.8) 

If the equations for 411,b and @l,b were considered, equations conjugate to (5.7) 
and (5.8) would be obtained. The functions Q and M are defined as in (4.22) and 
(4.23) except that now a. = 0.679 in our special case. The functions Q* and M* 
are obtained by letting (ao, co, $lo, Qlo) -+ (a:, c;, $fo, Q:o) in these formulae. The 
functions R and R* are given by 

Q aA@+ M aAp2 + iRB = 0, 

Q* aB/atA+ M* 8B/a2 + iR*A = 0. 

r m  r m  

J --m 

-P  Sm -m ( K 1 - B 2 4 ~ l ) 4 ~ ~ ( D ; ~ d ~ - a ~ S ~ ~  ( & I - P ~ & ~ ) ~ ~ ~ @ ~ O ~ Y .  (5.10) 

If A@,$)  and B(&,$) are assumed to have the same exponential dependence 

QQ*p2+ (QM*+MQ*)p.A+MM*h2+RR* = 0. (5.11) 

upon 2 and t”as given in (4.26), the characteristic equation relating h and p is 

“ 0  a: P Q &* M 

M* R R* 4 p = o  YlA=O 

0.679 0.234 0.4446 - 5.1164i - 1.325% - 1.5541 

0.4866 - 1.8099 0.7002 f 1.2946i f 0.4322i 

TABLE 2 

The various quantities entering into (5.11) are listed in table 2 for our special 
case when $ol(g) represents the eigenfunction of the primary disturbance 
associated with the flow (2.13). If we again consider only disturbances which 
grow with time and ask how the temporal behaviour of a wave with fixed wave- 
number (i.e. h = 0) is affected, we see that such waves will obtain a non-zero 
phase velocity but will grow with time as predicted by the parallel flow stability 
analysis. Alternatively, if we consider a wave of zero phase velocity (i.e. pi = O ) ,  
the results predict a shift in wave-number but no tendency towards spatial 
growth. These results are just the opposite of those found in the previous section, 
and we conclude that the type of interaction described under case B does not 
result in any secondary instability. 
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Although a change in the group velocity of a wave which grows with time is 
often associated with an increased rate of growth for waves which grow spatially 
(cf. (2.15) for 6 = 0) ,  the discussion following (2.15) indicates that spatially 
growing waves will not enter into resonant interaction. 

6. Analysis of case C 
Finally, we consider the simultaneous occurrence of both of the previous inter- 

actions. Thus, the basic periodicity, of wave-number p, is assumed to interact 
with a wave of wave-number a: so as to reproduce that wave. However, it is 
assumed to be able to reproduce that wave also through interaction with a, 
wave of wave-number a. 4 a:. As stated in §3B, the conditions for this 
double interaction are not met exactly for our particular flow, because the 
quantities Ip-a:l and lao-P[ differ by about 5 %. Because the difference is 
rather small and also because we have shown previously that waves close to the 
resonant wave are affected by the interaction, we shall assume that the difference 
can be smoothed out and make use of our previous results to analyse this case. 

We again take +,(x, 2, t, t, y) of the form (5.1). The following equalities relating 
ao, a$ and /3 now hold: 

p = ao-a: = za:, y = ao*(cg+E$) = aOCo,T-a:c$,,. (6.1) 
In  addition to (5.3), we now have the relation 

exp { - i(pz - yt)}  E* = ,!?* 
(which is (4.15) with the asterisk notation). In place of (5.4), we now write 

$11 = $ll,bE+$T1,bE*+$ll,aEexp{i(p~-yt)}+conjugate terms. (6.3) 

The equation for $ll,b is identical to (5 .5) .  In  contrast, the equation for $?l,b 

contains the additional terms which represent the effects of the double inter- 
action and is 

ia:(?%O-c:) ($TI',b-a,*2$Tl,b)-iag*~~O$11,b 

= - (aB/at")($,*d'-~($~$$) + (aB/aO){2a$2(~;O-~$)$To-~:($Td'-a~2$To)) 

- Wao(&o - 4 $10) $;1 + A & o  - at $io) $01 

- Pt&l -P"01) 9 x 0  - ao($t! -P2$;1) $10) 

+ iB{a:(fi; - a$":o) $hi* +p($;: - a:2$:;) $01 

-P($~l--P2$o1)$:; -~:($&-P2$;1)&o}. (6.4) 

&*(aB/at")+IM*(aB/aO)+iR*A-im*B = 0 (6.5) 

After applying the orthogonality condition, we obtain (5.7), along with its con- 
jugate, as well as an equation which results from (6.4) of the form 

along with its conjugate. The function 8" is obtained from (4.24) by substituting 
in turn (4, $To, @?o) for (a09 $10, @'lo). 

If we now define the following operators 

L = &(apt") +M(a/aa), L* = &*(apt") +M*(a/aa) (6.6) 

{(LL*+RR*)(EE*+f7ra*)- \N*lzLE}B = 0. (6.7) 

we can write the governing equation for &a, t") as 
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For simplicity, we shall consider a disturbance of fixed wave-number which can 
grow only with time, i.e. B = I?($). Using the previously defined notation (4.26), 
the characteristic equation is 

1Q121&*12p4+(2(BB*Q&*)T- lN*121Q12}p2+ IR121R*12 = 0. (6.8) 

We shall now assume that the various quantities given in tables 1 and 2 may be 
employed for the calculation of p in spitepf the 5 yo difference in eigenvalues. 
However, in order to have some idea of the errors involved, the calculations have 
been done twice, first with the value of &* corresponding to a$ = 0.2223 (table 1, 
line 1) and then with the value of Q* corresponding to a$ = 0.234 (table 2). In  
each case, four different complex roots were obtained; these are 

(1) Q* = - 1.23123: = f (0.1327 k 0*4276i), (6.9) 

(2) &* = - 1.3258i: = k (0*1245+ 0.41393). (6.10) 

The variations seem small enough that we can assume that the calculations are 
not nugatory. The real part of p is only about half of the value calculated for 
case A, and it would therefore seem that the occurrence of a B-type interaction 
with an A-type interaction has a strong stabilizing influence upon the latter. 
Hence we can say that the basic periodic flow in our case exerts its greatest in- 
fluence when it is able to reproduce a wave by interaction with that wave and 
with no other. 

The greatly reduced value of the real part of p, relative to case A ,  means that 
the streamwise component of the periodic flow would have to be of much larger 
amplitude (about 24 % of the mean velocity difference) than we could expect on 
the basis of experiment in order to make the subharmonic growth rate pre- 
dominant. Of course, further analysis might show that the 5 yo difference in the 
wave-numbers required for the two types of interaction is of greater importance 
than has been assumed. Also, the small magnitude of the difference might be 
peculiar to the flow with a hyperbolic-tangent profile and would be increased for 
flows with still more realistic profiles. 

7. Discussion 
In  this section, we shall summarize the results and then attempt to clarify the 

main physical process. 
We have essentially considered the stability of a flow composed of a mean, 

parallel component and a non-parallel component which has a periodic be- 
haviour with time and distance in the direction of flow. Our main result is that 
the periodic flow can destabilize a disturbance associated with the mean flow if 
the frequency and wave-number of that disturbance are half of those associated 
with the basic periodic flow. The disturbance and the periodic flow can then inter- 
act to produce a wave which is of the same wave-number and frequency as the 
disturbance and which can therefore reinforce it. Such destabilization seems most 
likely for non-dispersive waves, such as the temporally growing disturbances 
possible in antisymmetric shear flows, because the linear dependence of frequency 
upon wave-number for such waves guarantees that the condition on frequency 
is met if the condition on wave-number is satisfied. 
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The process of destabilization was investigated in detail in the case when the 
mean flow profile was described by the hyperbolic-tangent function. The periodic 
flow was chosen to represent the finite-amplitude, near-equilibrium flow associ- 
ated with the fundamental disturbance. A critical amplitude for the periodic 
flow was defined by finding the amplitude required to make the subharmonic 
growth rate exceed that of the most unstable disturbance associated with the 
mean flow. The critical amplitude ofathe streamwise component of the periodic 
flow was found to be about 12 % of the mean velocity difference across the shear 
layer. This is above the value (3-10%) which was expected on the basis of an 
experiment performed by Sat0 (1959) in connexion with a separated shear flow, 
but the order-of-magnitude agreement seems acceptable. 

A second mechanism by which the periodic flow might affect the behaviour of 
a wave with wave-number less than its own was revealed during the analysis. 
This interaction takes place between the periodic flow and two different waves, 
whose difference in wave-number and frequency is equal to those of the periodic 
flow. The numerical results indicate that this type of interaction does not result 
in increased amplification with time of the interacting waves. 

Some interpretation of the above results is obviously desirable. The concept of 
reinforcement of a wave through wave reproduction seems clear enough. The 
special propensity of the subharmonic wave to be reproduced, however, needs 
clarification, as well as the failure of the ‘double’ interaction mechanism to 
result in reinforcement. 

Some insight can be gained by examining the energy of that portion of the 
flow which is described by the subharmonic wave-number (say a)  and odd multi- 
ples of it ( 3 4  5a, etc.). Let this flow be denoted by u‘, 0’. The rest of the flow can 
be split into a mean component, 5, and a portion described by even multiples of 
the subharmonic wave-number ( 2 4  4a, etc.), which includes the wave-number 
( 2 a )  of the basic periodic flow. Let the flow described by these wave-numbers be 
denoted by u”, w“. Stuart (1962, equation 4.9) has derived the energy equation 
for the u’, w’ flow, which is 

where the integration takes place over the wavelength (277/a) of the subharmonic 
disturbance and the flow width. The first two terms on the right-hand side are 
the familiar Reynolds stress and viscous dissipation terms. The last term repre- 
sents the energy transfer between the ‘odd’ (u’, w’) and the ‘even’ (u”, v”) part 
of the flow. 

If we consider a perturbation of O ( E )  upon a parallel flow, then U” represents 
the first harmonic, and the last term can be considered of O(e4) for the purposes 
of discussion. When the basic flow is assumed to have a periodic component of 
wave-number 2a and amplitude 6, this term is of O(e28) and so can contribute 
more effectively to the growth of the u’, w’ components if 6 B c2. Because the 
energy integral is of O(e2), the transfer between the basic periodic flow and the 
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disturbance has an O(6) effect upon the rate of increase of energy of the disturb- 
ance. 

The energy of the disturbance is not affected to such a degree when we look 
at a disturbance with wave-number, say a, equal to that of the periodic flow. 
Then, the last term in (7.1) is of O(d3),  because u’ N O(6) and u” - O(e8). After 
the energy of the basic flow is subtracted out of the equation, the predominant 
term in the energy integral is of O(e8). Hence the transfer between the basic 
periodic flow and the disturbance has only an O(S2) effect upon the rate of increase 
of disturbance energy for this case. The subharmonic wave which has a wave- 
number exactly half that of the basic periodic flow is therefore quite unique in 
being able to receive energy from the periodic flow; its amplification due to this 
transfer is an order of magnitude greater than any other wave. Our model pre- 
supposes that any energy extracted from the periodic flow will be compensated 
by additional energy transferred from the mean flow; hence it is reasonable to 
say that the subharmonic receives energy via the basic periodic flow. 

The interaction discussed in case C took place between the periodic flow of 
O(6)  and wave-number 2a and two disturbances, of O(e) and with wave-numbers 
a and 3a respectively. The energy-transfer term will still be of O(s2S), with refer- 
ence to (7.1), but will now be composed of terms representing energy exchange 
between the two disturbances as well as terms representing the transfer of energy 
from the periodic flow to either disturbance. The transfer of energy to (or from) 
the disturbance with wave-number a is still of 0(6),  relative to the rate of increase 
of energy of that disturbance. A similar statement holds for the coupling terms 
which represent energy exchange between the disturbances. However, the trans- 
fer of energy directly to or from the periodic flow to the disturbance with wave- 
number 3a is at least no larger than 0(d2);  hence we expect that energy exchange 
between the two disturbances might have a stabilizing influence on the disturb- 
ance with wave-number a and a destabilizing influence on the disturbance with 
wave-number 3a. These statements are in accordance with the numerical results 
of $6. 

The interaction discussed for case B cannot be discussed directly by reference 
to (7.1). However, it is interesting to examine the distribution of vorticity for the 
disturbances involved in the interaction (cf. Michalke 1964, figure 9). Disturb- 
ances with wave-numbers less than that for maximum growth have a smaller 
peak in vorticity, which is located further away from the inflexion point, than 
that for the disturbance undergoing maximum amplification. The opposite 
statement holds for disturbances with wave-numbers greater than that for 
maximum growth (a = 0.4446). The interaction can be viewed as a means of 
exchanging vorticity between the disturbances. Any vorticity fed into a disturb- 
ance with a less than 0.4446 would tend to make it resemble more the most un- 
stable disturbance and so destabilize it. On the other hand, vorticity fed into a 
disturbance with a greater than 0.4446 would tend to make it more similar to the 
neutral disturbance and so stabilize it. Case B, which involves two waves whose 
wave-numbers are on either side of the most unstable wave-number, seems to 
consist of two such contradictory processes which therefore tend to cancel out. 

The importance of the periodic nature of the basic flow cannot, however, be 
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overemphasized. As clearly shown by (7.1), it is this feature which suggests that 
the growth rate of a subharmonic disturbance may be altered considerably from 
the value predicted by a parallel flow analysis. Domm (1956) has attempted to 
explain the frequency drop observed in experiments on free shear layers on the 
basis that the initial disturbances can be represented by potential vortices which 
then tend, as he shows, to slip around each other. As pointed out to the present 
author by Dr J. T. Stuart, the classical stability analysis of a single row of 
vortices,asdescribedbyLamb (1959,Art. 156),permits thedefinitionofamostun- 
stable disturbance, whose wavelength is equal to twice the distance between pairs 
of vortices (this is obtained by maximizing the growth rate given in equation (12) 
of Lamb’s presentation). The point of view of this paper is that the behaviour 
of the vortices can be explained on the basis of their periodic nature; the be- 
haviour of disturbances in free shear layers can be explained on the same basis, 
which does not require us to identify such disturbances as potential vortices. 
One important advantage of the present analysis is that a critical amplitude for 
the primary disturbance can be defined rather naturally. A second is that a 
representation of the flow is constructed in which both fundamental and sub- 
harmonic waves are present, as well as other waves which result from their 
mutual and self-interaction. As figure 1 indicates, a considerable peak in energy 
can occur at the fundamental frequency even after the subharmonic has emerged. 
Furthermore, a recent experimental investigation by Browand (whose results 
were received by the present author after this analysis had been completed) has 
revealed that a significant energy peak can occur a t  2’s of the fundamental fre- 
quency. The present theory predicts the existence of such a response through the 
non-resonating terms of $11 (cf. 4.16) and also through the higher-order resonant 
interaction mentioned near the end of $4. 

Browand’s results also indicate that the amplitude of the fundamental is rela- 
tively constant (which is essential for the present model) until the subharmonic 
has grown to comparable size, at which point the fundamental decreases appreci- 
ably. The present linear analysis is, of course, inapplicable to this region of large- 
amplitude growth, whose characteristics probably account for the intermittent 
nature of the generation of the subharmonic oscillation which Browand also 
observed. He also found a variation across the shear layer of the wave speed of 
the subharmonic oscillation, which is inexplicable on the basis of the present 
model. However, it is encouraging that Browand concluded that three-dimen- 
sional effects are not important in the region of subharmonic growth and that 
the critical amplitude for the primary oscillation, at which the subharmonic 
emerges, is about 10 % of the freestream velocity. This figure is in quite reasonable 
agreement with the prediction of the present analysis. 

It is obvious that the numerical calculations are of great importance to the 
conclusions of this paper; for these, the author is greatly indebted to Prof. W. C. 
Reynolds, who was at the NPL during 196665 while on leave from Stanford 
University. The author would also like to thank Prof. Reynolds, Dr S. Rosenblat, 
Mr J. Watson and, especially, Dr J. T. Stuart for their comments concerning the 
paper. He would also like to acknowledge the many benefits which he has derived 
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from his association with Dr Stuart. This work was completed while the author 
held a Senior Research Fellowship at the NPL and was carried out as part of the 
research programme of the Laboratory. The paper is published by permission of 
the Director of the Laboratory. 

Appendix 
The original purpose of this appendix was torelate the eigenvalues correspond- 

ing to spatially growing disturbances to those corresponding to temporally 
growing disturbances for the case of the inviscid, parallel flow given by 

U, = 0*5(1+tanhy), (2.14) 

through application of the analysis of Gaster (1962). 
Since the time of the original writing, however, Michalke (1965b) has published 

his results concerning the spatial instabilities, which results were obtained by 
direct numerical calculation. It was decided, however, to retain this section, 
first, to show that excellent results are obtained by means of Gaster's analysis 
for the flow (2.14) and, secondly, to discuss an anomalous case arising for the 
flow (2.13). 

Gaster assumed that the perturbed flow can be described by a stream function 
of the form 

7&X7Y7t) = ~o(Y)+~(y)exP(i(ax-Pt)}, (A 1) 

where a and j9 are, in general, complex. Our problem is to relate the known results 
for ai = 0 to the desired values for complex a but pi = 0. Gaster assumed that a 
and p are analytic functions of each other and therefore fulfil the Cauchy- 
Riemann equations 

He then integrated these equations from a state (T) where a, = 0 to a state (23) 
where pi = 0 while maintaining a,. as constant and so obtained 

For the flow (2.14),we know that /3i(T)max is 0.09485 (cf. Michalke(1964), table 1). 
We anticipate that a, will be of the same order of magnitude and expand the 
integrands of (A 3) and (A 5) in a Taylor's series about a, = 0 : 
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After using the relations (A 2) and integrating, we obtain 

For the special case of the flow (2.14), the group velocity is equal to the wave 
velocity, and we have 

= c, = 0.5, (-) a2 Pr = 0, 
ai=O 

where c, is the wave velocity. The first term in the expansion (A 7) therefore 
gives the often quoted result 

ai = -p i (T) /~ ,  = -Ct,Ci/C,. (A 10) 

We shall find the error involved in this result by calculating the effect of the 
O(a9) term. We shall also calculate P,(S), which is given by 

PAS) = PAT) - ai(aPi/%)af=o, (A 11) 
up to o(a;). 

First, however, consider (A 7) when the parallel flow is given by 

U,, = tanh y. (2.13) 

With reference to figure 2, we then have 

( a P r / a a r )  = 0, (azpi/aol,z),i=o < 0. (A 12) 
Because Pi(T) is greater than zero for a, less than unity and greater than zero, 
the result is invalid when only terms of the second order are considered. Either 
ai is of exceptionally large magnitude for this case or ,f3 and 01. are not analytic 
functions of each other. 

Some indication that this latter conclusion is correct results from considera- 
tion of the stability of the discontinuous flow 

y > 0, u, = ul; y < 0, u, = u,, (A 13) 

where Ul and U, are constants. This flow should serve as a model for (2.13) and 
(2.14) in the limit a,-+ 0. If we assume the disturbed flow to be described by 

@&,y,t) = Ui+#i(y)exp(ia(x-ct)} (j = 1,2),  (A 14) 

q5;-a2(bj = 0. (A 15) 

dl = Ae-au,  q52 = Beau, (A 16) 

where a and c may be complex, the equation for #j(y) is given by 

In order to have a solution which decays as y-+  f co, we must have I01.,l > 0 and 

where we take a, > 0 in order to be definite. By matching the pressure across 
the interface and ensuring that the expression for the deflexion of the interface 
is unique, the eigenvalue relation is 

c = f r (  u, + V,) f fri( Ul - U,), (A 17) 

which is, of course, the classical Helmholtz result for czi = 0. 
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If we now stipulate that the solution can grow or decay only with x, we impose 
the condition 

aic,+arci = 0. (A 18) 

Our solution will then be of the form 

$&y,t) = Uj+$i(y)exp ( . [  %a, x- ( c,+- 33 t +-x S : i )  . 
This is exactly the result that would be obtained from (A 10) and (A 11) for 
c, $. 0. In  the case of the flow (2.13), there are no solutions of this type because 
(A 18) would require a, = 0 for c, = 0. The boundary conditions could then not 
be met. Hence, it seems improbable that there are solutions which can grow with 
distance in the streamwise direction for the flow (2.13), at least in the limit 
oI,+O. 

Further insight may be gained by application of Lin’s perturbation analysis 
(4.8) about the neutral solution, because that analysis does not seem limited only 
to the case of real a. For the flow 

U,(y) = U,+ tanh y, (A 20) 

where Qis a constant, the relation is, with reference to (4.10), 

c = us- i(a2- l)/n. 

p = u,a--ia(a2--l)/n 
We therefore have 

If we now take a = 1 + a,, where a, may be complex but with la1] < 1, we have 

p- us= a,[V,- (2i/n)] - (3ia2,ln) - ( k q 7 r ) .  (A 23) 

a, = iinp,. (A 24) 

For the case Us = 0 and pi = 0, we have to first order 

Thus, waves which travel in the positive x-direction (p, > 0) will be damped in 
that direction, whereas waves which travel in the negative x-direction (p, < 0) 
will also be damped in that direction. It therefore only seems reasonable to con- 
clude that such waves are stable. 

The first-order result involves no change in wave-number. By including higher- 
order terms, the dependence on wave-number can be established. We let 

a, = +in/?, + a2 /3: + a, p: 

a, = &nTp, + gn”; - iin3pr3. 

(A 25) 

(A 26) 

and substitute into (A 23) for 9 = 0. We find that to third order 

Thus, the real part of a, increases with p,, regardless of the sign of p,; i.e. the 
above solutions exist only for a, > 1. Solutions which grow with time, of course, 
exist only for a, < 1, while solutions which decay with time cannot be investigated 
on a purely inviscid basis. Whether or not the above solutions are valid limits to 
any viscous solutions would seem to be a worthy topic for further analysis. We 
note in passing that (A 26) seems valid only for very small values of p,. 
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Now consider the case when U, > 0. The first-order result is, for p, = 0, 

We then have al,r and al, less than zero if /3, is less than U,. Thus a small decrease 
in wave-number below the neutral value corresponds to a spatial growth rate 
such that the wave grows in the positive x-direction and to a frequency which is 
below the corresponding frequency of the temporally amplified solution. These 
results agree with the results gained from Gaster’s analysis and which will now be 
discussed. 

We shall calculate a, for the flow given by (2.14) by means of (A 7) when 
terms of O(a3) are included. If we define 

the relation for a, is then 
7 = (a2Pi/a~,2),,=o 

ad = c, f (c: + 2y/3$/y. 
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FIUURE 4. The derivatives of the temporal growth rate with respect to wave-number for 
the flow U,(y) = 0.5(1+ tanh y). 

If we take the limit a,+O (Pi+O) ,  we obtain (A 19) by choosing the negative 
sign before the radical. The quantities (aPi/aa,),i=o and y were obtained by linear 
interpolation from the results of Michalke (1964) and are shown in figure 4 for 
the flow (2.14). The asymptotic value of y as a,+ 0 was obtained from the results 
of Drazin & Howard (1962)’ and the value of (a/3i/aa,),i=o as a,-+ 1 was obtained 
through application of the formula of Lin (4.8). The value of y as predicted by 
this latter relation for a.,+ 1 is about twice the value obtained by interpolation 
and was not used. 



Stability of an inviscid shear layer 687 

0.25 

020 

0.15 

r;l" 
I 

0.10 

0.05 

0 
0 0.2 0.4 06 0.8 1.0 

4 

FIGURE 5. Spatial growth rate of disturbances to the flow U,(y) = 0.5( 1 + tanh y), accord- 
ing to (1) first-order theory (equation (A 10)) and (2) second-order theory (equation (A 21)). 
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FIGURE 6. The frequency of disturbances to the flow U&) = 0.5(1+ tanh y). (l), spatially 
growing disturbances. (Z), temporally growing disturbances. 

The values of a< obtained from (A 21), with the negative sign chosen, for 
various ar are shown in figure 5. The divergence from the exact results obtained 
by Michalke (1965b) is so small as to preclude comparison in this figure. The 
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values predicted by (A 10) are also shown for purposes of comparison. It is clear 
that use of (A 10) involves an error of about 18 yo for the maximum value of ad 
as found by (A 21). This error presumably accounts for the fact that Sat0 (1959, 
figure 14) measured spatial amplification rates somewhat in excess of the theo- 
retical value, as obtained from the temporal growth analysis of Lessen & Fox 
(1955) together with the transformation (A 10). The value of wave-number for 
maximum spatial amplification is also slightly less than that for maximum 
temporal amplification. The present results are correct up to O(a:) because the 
next term in the expansion (A 7) is of the form (a~/6)(a3p,/aa~),i=0, which is 
zero for the flow (2.14). 

The variation of p,(s) with a,, obtained from (A 11) with use of the second- 
order estimate of ai, is shown in figure 6 along with p,(T).  It is clear that the 
frequencies of the spatially growing waves vary considerably from the linear 
dependence upon a, which is characteristic of temporally growing waves. The 
calculations show that pr(s) is greater or less than p,(T) depending upon whether 
a, is less or greater, respectively, than the wave-number for maximum temporal 
growth. Only for this special wave-number (along with the limiting cases a, = 0 
and a, = 1)  do the two frequencies coincide. 

This dispersive feature of the spatially growing waves is the basis of the 
remarks made near the end of 3 4 concerning the inability of the spatially grow- 
ing disturbances to satisfy the conditions (3.4), (3.5) for resonance. 

For results concerning the relation between the two types of disturbance in 
the inviscid jet and wake, the reader is referred to the recent paper by Betchov 
& Criminale (1966). 
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